Tupled Pregroup Grammars enjoy semantics

Aleksandra Kislak-Malinowska

University of Warmia and Mazury, Olsztyn, Poland

Warszawa, 30.01.2015
Before we start

Joachim Lambek (1922-2014)
Pregroups and pregroup grammars were introduced in 1999 by Jim Lambek, as a new tool for syntactic analysis of natural languages.
Pregroups and pregroup grammars were introduced in 1999 by Jim Lambek, as a new tool for syntactic analysis of natural languages.

The formalism of pregroup grammars belongs to the tradition of categorial grammars.
Pregroups and pregroup grammars were introduced in 1999 by Jim Lambek, as a new tool for syntactic analysis of natural languages.

The formalism of pregroup grammars belongs to the tradition of categorical grammars.

In general they are part of a wide field of mathematical linguistic i.e. the theory of formal grammars and automata with application in computer science, in particular in natural language processing.
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
- string of words
Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
- string of words
- a sentence?
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
- string of words
- a sentence?
- calculation on types
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
- string of words
- a sentence?
- calculation on types
- answer (Y/N)
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
- string of words
- a sentence?
- calculation on types
- answer (Y/N)

- what is the meaning of the sentence?
Not so formal - how to describe the (natural) language?

Remember: language is a tricky business.

- word (the element of an alphabet)
- type (assigned to a word)
- string of words
- a sentence?
- calculation on types
- answer (Y/N)

- what is the meaning of the sentence?
- calculating the meaning???
Ppregroup is a structure \((G, \leq, \cdot, \ell, r, 1)\) such that \((G, \leq, \cdot, 1)\) is a partially ordered monoid, and \(\ell\) and \(r\) are unary operations satisfying the following inequalities:

\[
(PRE) \quad a\ell a \leq 1 \leq aa\ell \quad \text{and} \quad aa^r \leq 1 \leq a^ra,
\]

for all \(a \in G\).

\(a\ell\) is called the *left adjoint of* \(a\), whereas \(a^r\) is called the *right adjoint of* \(a\).
Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

Introduction
Definition of a pregroup
Example

Example

John
\[N \]
\[\pi_3^r s_1 o_4^l \]
Mary
\[N \] \implies ???
Example

John \[N \]
likes \[\pi_3^r \, s_1 \, o_4^l \]
Mary \[N \] \[\Rightarrow \] ???

Note: \(N \leq \pi_3 \) and \(N \leq o_4 \)
Example

John \text{ likes} Mary

\begin{align*}
N & \quad \pi_3^r \quad s_1 \quad o_4^l \\
\quad & \quad N \
\end{align*}

⇒ ???

Note: \(N \leq \pi_3 \) and \(N \leq o_4 \)

John \text{ likes} Mary

\begin{align*}
\pi_3 & \quad \pi_3^r \quad s_1 \quad o_4^l \\
\quad & \quad O_4 \
\end{align*}

⇒ s_1
Introduction

Definition of a pregroup

Example

John likes Mary

\[N \pi_3^r s_1 o_4^l N \Rightarrow ??? \]

Note: \(N \leq \pi_3 \) and \(N \leq o_4 \)

John likes Mary

\[\pi_3 \pi_3^r s_1 o_4^l o_4 \Rightarrow s_1 \]

John likes Mary.

\[\pi_3 \pi_3^r s_1 o_4^l N \Rightarrow s_1 \]
Other approaches

pregroups with modalities
(M.Fadda, A.Kiślak-Malinowska)
Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

Other approaches

pregroups with modalities
(M. Fadda, A. Kiślak-Malinowska)

pregroups with letter promotions
(W. Buszkowski, Z. Lin, K. Moroz)
Other approaches

pregroups with modalities
(M. Fadda, A. Kiślak-Malinowska)

pregroups with letter promotions
(W. Buszkowski, Z. Lin, K. Moroz)

pregroups with metarules for word order
(C. Casadio, A. Kiślak-Malinowska, J. Lambek, M. Sadrzadeh, ...)
Other approaches

pregroups with modalities
(M. Fadda, A. Kiślak-Malinowska)

pregroups with letter promotions
(W. Buszkowski, Z. Lin, K. Moroz)

pregroups with metarules for word order
(C. Casadio, A. Kiślak-Malinowska, J. Lambek, M. Sadrzadeh)

product pregroups
(G. Kobele, T. Kusalik)
Other approaches

- pregroups with modalities
 (M. Fadda, A. Kiślak-Malinowska)

- pregroups with letter promotions
 (W. Buszkowski, Z. Lin, K. Moroz)

- pregroups with metarules for word order
 (C. Casadio, A. Kiślak-Malinowska, J. Lambek, M. Sadrzadeh, ...)

- product pregroups
 (G. Kobele, T. Kusalik)

- tupled pregroups
 (C. Casadio, A. Kiślak-Malinowska, E. Stabler)
Let \((\mathbb{P}, \leq)\) be a (finite) poset. Elements of \(\mathbb{P}\) are called **atomic (basic) types.** Terms are of the form \(a^{(n)}\), for any \(a \in \mathbb{P}\) and \(n \in \mathbb{Z}\). A **type** is a finite sequence of terms.
Let \((P, \leq)\) be a (finite) poset. Elements of \(P\) are called atomic (basic) types. Terms are of the form \(a^{(n)}\), for any \(a \in P\) and \(n \in \mathbb{Z}\). A type is a finite sequence of terms.

In **TPG-expressions** we use tuples of typed strings. Usually the expressions of TPGs are written:

\[
\left(\begin{array}{ccc}
t_1 & \ldots & t_k \\
s_1 & \ldots & s_k \\
\end{array} \right)
\]
Let \((\mathbb{P}, \leq)\) be a (finite) poset. Elements of \(\mathbb{P}\) are called **atomic (basic) types**. **Terms** are of the form \(a^{(n)}\), for any \(a \in \mathbb{P}\) and \(n \in \mathbb{Z}\). **A type** is a finite sequence of terms.

In **TPG-expressions** we use tuples of typed strings. Usually the expressions of TPGs are written:

\[
\left(\begin{array}{c}
t_1 \\
\vdots \\
t_k \\
s_1 \\
\vdots \\
s_k
\end{array} \right)
\]

\[
\left(\begin{array}{c}
w \\
\pi_3 \\
\text{who} \\
\epsilon \\
a \\
b \\
c
\end{array} \right)
\left(\begin{array}{c}
A \\
B \\
C \\
a \\
b \\
c
\end{array} \right)
\]
A merge operation applying to any pair of tuples is defined as follows:

\[
\begin{pmatrix}
t_1 & \ldots & t_i \\
s_1 & \ldots & s_i \\
\end{pmatrix} \cdot \begin{pmatrix}
t_{i+1} & \ldots & t_k \\
s_{i+1} & \ldots & s_k \\
\end{pmatrix} = \begin{pmatrix}
t_1 & \ldots & t_k \\
s_1 & \ldots & s_k \\
\end{pmatrix}
\]
A merge operation applying to any pair of tuples is defined as follows:

\[
\begin{pmatrix}
t_1 & \ldots & t_i \\
s_1 & \ldots & s_i
\end{pmatrix}
\bullet
\begin{pmatrix}
t_{i+1} & \ldots & t_k \\
s_{i+1} & \ldots & s_k
\end{pmatrix}
= \begin{pmatrix}
t_1 & \ldots & t_k \\
s_1 & \ldots & s_k
\end{pmatrix}
\]

An operation of deleting i-th coordinate, for any k-tuple \(k > 0 \) and any \(1 \leq i \leq k \) is defined as follows:

\[
\begin{pmatrix}
t_1 & \ldots & t_k \\
s_1 & \ldots & s_k
\end{pmatrix}
_i
= \begin{pmatrix}
t_1 & \ldots & t_{i-1} & t_{i+1} & \ldots & t_k \\
s_1 & \ldots & s_{i-1} & s_{i+1} & \ldots & s_k
\end{pmatrix}
\]
A tupled pregroup grammar (TPG) is a quintuple $G = \langle \Sigma, \mathcal{P}, \leq, \mathbb{I}, s \rangle$, such that

- Σ is a nonempty alphabet,
- \mathcal{P} is a set of atomic (basic) types partially ordered by \leq,
- $\mathbb{I} \subset (\mathcal{T}_\mathcal{P} \times \Sigma^*)^*$,
- and $s \in \mathcal{P}$ is a designated type.
Let us define a binary relation on tupled pregroup expressions, denoted by \(\Rightarrow \) that holds in the following cases:
(for any tuples \(e_1, e_2 \) and sequence of tuples \(\alpha, \beta \))
Let us define a binary relation on tupled pregroup expressions, denoted by \(\Rightarrow \) that holds in the following cases:
(for any tuples \(e_1, e_2 \) and sequence of tuples \(\alpha, \beta \))

\[
(Mrg) \quad \alpha \ e_1 \ e_2 \ \beta \Rightarrow \ \alpha \ e_1 \bullet e_2 \ \beta
\]
Let us define a binary relation on tupled pregroup expressions, denoted by \Rightarrow that holds in the following cases:
(for any tuples e_1, e_2 and sequence of tuples α, β)

\[(Mrg)\quad \alpha \ e_1 \ e_2 \ \beta \Rightarrow \alpha \ e_1 \bullet e_2 \ \beta\]

\[(Move)\quad \alpha \left(\begin{array}{c} t_1 \cdots t_k \\ s_1 \cdots s_k \end{array} \right) \ \beta \Rightarrow \alpha \left(\begin{array}{c} t_i t_j \\ s_i s_j \end{array} \right) \bullet \left(\begin{array}{c} t_1 \cdots t_k \\ s_1 \cdots s_k \end{array} \right)_{-i-j} \ \beta\]
Tupled pregroup grammars - TPGs

\[(GCon)\quad \alpha \left(\ldots \ x a^{(n)} b^{(n+1)} y \atop s \ \ldots \right) \beta \Rightarrow \alpha \left(\ldots \ xy \atop s \ \ldots \right) \beta\]
Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

Tupled pregroup grammars - TPGs

\[(GCon)\quad \alpha \left(\ldots \ x^{a(n)}b^{(n+1)}y \atop s \right) \beta \Rightarrow \alpha \left(\ldots \ xy \atop s \right) \beta\]

\[(GExp)\quad \alpha \left(\ldots \ xy \atop s \right) \beta \Rightarrow \alpha \left(\ldots \ x^{a(n+1)}b^{(n)}y \atop s \right) \beta\]
The list of types

Types used in our examples:

- s_1: type of a sentence in a present tense
- π_3: third person subject
 - For example, *he*, *she*, *it*
- π_3: the trace of third person subject
- o_4: singular direct object
- o_4: the trace of singular direct object
The list of types

\(n \) type of a noun singular
for example *boy, author, book*

\(N \) type of a complete noun phrase (singular)
for example *a boy, the author, John, an interesting book*
We assume \(N \leq \pi_3 \) and \(N \leq o_4 \)

\(\bar{N} \) the trace of a complete noun phrase (singular)
We assume \(\bar{N} \leq \pi_3 \) and \(\bar{N} \leq o_4 \)

\(w \) type of relative pronoun
for example *who, which, that*

\(\bar{w} \) type of possessive relative phrase
for example *whose author, whose wise mother*
Dictionary

Let the dictionary (showing only tuples used in our examples) be as follows:

\[
I = \{ (Nn^\ell, \text{the}) (Nn^\ell, \text{a}) (n, \text{mother}) (n, \text{book}) (n, \text{boy}) \\
(N, \text{Mary}) (N, \text{John}) (\pi^r s_1 o_4^l, \text{likes}) (\pi^r s_1 o_4^l, \text{likes}) (\pi^r s_1 o_4^l, \text{likes}) \\
(\pi^r s_2 o_4^l, \text{liked}) (\pi^r s_2 o_4^l, \text{liked}) (\pi^r s_2 o_4^l, \text{liked}) (w, N, \epsilon) \\
w, o_4, \epsilon (\bar{w} n^\ell, N, \epsilon) (N^r N s^l w^l, \epsilon) (N^r N s^l \bar{w}^l, \epsilon) \ldots \}
\]
How to interpret tuples?

- $\left(\begin{array}{c} n \\ mother \end{array} \right)$ - this one means that the word *mother* has a type n of a noun singular.
How to interpret tuples?

- \((n_{mother})\) - this one means that the word *mother* has a type \(n\) of a noun singular.

- \((Nn^\ell_{the})\) - the type of the determiner *the* is \(Nn^\ell\) and means that it will become a complete noun phrase singular when a noun singular is attached on its right (as for example *the mother*).
How to interpret tuples?

- \(\left(\begin{array}{c} n \\ mother \end{array} \right) \) - this one means that the word *mother* has a type \(n \) of a noun singular.

- \(\left(\begin{array}{c} Nn^l \\ the \end{array} \right) \) - the type of the determiner *the* is \(Nn^l \) and means that it will become a complete noun phrase singular when a noun singular is attached on its right (as for example *the mother*).

- \(\left(\begin{array}{c} \pi_3^r S_1 \omega_4^l \\ likes \end{array} \right) \) - this will become a sentence after attaching third person subject on its left and direct object on its right.
How to interpret tuples?

- \((\begin{array}{c} w \\ whom \\ \epsilon \end{array} \begin{array}{c} o_4 \\ \ell \end{array})\) - this one tells us that a relative pronoun whom put in the sentence will replace a direct object leaving the trace of a direct object in the context, as in *a boy whom John likes*.
How to interpret tuples?

- \(\left(\begin{array}{c} w \\ whom \\ \frac{o_4}{\epsilon} \end{array} \right) \) - this one tells us that a relative pronoun whom put in the sentence will replace a direct object leaving the trace of a direct object in the context, as in *a boy whom John likes _*.

- \(\left(\begin{array}{c} N^rNs^\ell w^\ell \\ \frac{\epsilon}{\epsilon} \end{array} \right) \) - this one is responsible for word order in the sentence with a relative pronoun.
Our example **John likes Mary** with the following lexical entries:

\[
\begin{pmatrix}
N \\
John
\end{pmatrix}
\begin{pmatrix}
N \\
Mary
\end{pmatrix}
\begin{pmatrix}
\pi^r_3 s^l_1 o^l_4 \\
likes
\end{pmatrix}
\]

Using the rules of \((Mrg)\), \((Move)\) and \((GCon)\) we can justify the correctness of this sentence with the following derivation:

\[
\begin{pmatrix}
N \\
John
\end{pmatrix}
\begin{pmatrix}
\pi^r_3 s^l_1 o^l_4 \\
likes
\end{pmatrix}
\begin{pmatrix}
N \\
Mary
\end{pmatrix}
\Rightarrow
\]

\((Mrg \text{ on the second and third tuples})\)
John likes Mary

Our example **John likes Mary** with the following lexical entries:

\[
\left(\begin{array}{c} N \\ John \end{array} \right) \left(\begin{array}{c} N \\ Mary \end{array} \right) \left(\begin{array}{c} \pi^r_3 s^l_1 o^l_4 \\ \text{likes} \end{array} \right)
\]

Using the rules of \((Mrg)\), \((Move)\) and \((GCon)\) we can justify the correctness of this sentence with the following derivation:

\[
\left(\begin{array}{c} N \\ John \end{array} \right) \left(\begin{array}{c} \pi^r_3 s^l_1 o^l_4 \\ \text{likes} \end{array} \right) \left(\begin{array}{c} N \\ Mary \end{array} \right) \Rightarrow \\
(Mrg \text{ on the second and third tuples})
\]

\[
\left(\begin{array}{c} N \\ John \end{array} \right) \left(\begin{array}{c} \pi^r_3 s^l_1 o^l_4 \\ \text{likes} \end{array} \right) \left(\begin{array}{c} N \\ Mary \end{array} \right) \Rightarrow \ N \leq o_4
\]

(making use of partial order)
John likes Mary

\[
\begin{pmatrix}
N \\
John
\end{pmatrix}
\begin{pmatrix}
\pi_3^r s_1 o_4^l \\
\text{likes} \\
\text{Mary}
\end{pmatrix}
\Rightarrow
\]

(Move on coordinates of the second tuple)
Example 1

John likes Mary

\[
\begin{pmatrix}
N \\
\text{John}
\end{pmatrix}
\begin{pmatrix}
\pi_3^r s_1 o_4^l \\
\text{likes}\end{pmatrix}
\begin{pmatrix}
o_4 \\
\text{Mary}
\end{pmatrix}
\Rightarrow
\]

(Move on coordinates of the second tuple)

\[
\begin{pmatrix}
N \\
\text{John}
\end{pmatrix}
\begin{pmatrix}
\pi_3^r s_1 o_4^l o_4 \\
\text{likes}\end{pmatrix}
\begin{pmatrix}
\text{Mary}
\end{pmatrix}
\Rightarrow
\]

(GCon in the second tuple)
John likes Mary

\[
\left(\begin{array}{c}
N \\
John
\end{array} \right) \left(\begin{array}{cc}
\pi^r_3 s_1 o_4^l \\
likes \\
Mary
\end{array} \right) \Rightarrow
\]

(Move on coordinates of the second tuple)

\[
\left(\begin{array}{c}
N \\
John
\end{array} \right) \left(\begin{array}{cc}
\pi^r_3 s_1 o_4^l o_4 \\
likes \\
Mary
\end{array} \right) \Rightarrow
\]

(GCon in the second tuple)

\[
\left(\begin{array}{c}
N \\
John
\end{array} \right) \left(\begin{array}{cc}
\pi^r_3 s_1 \\
likes \\
Mary
\end{array} \right) \Rightarrow
\]

(Mrg on the first and the second tuple)
John likes Mary

\[
\begin{pmatrix}
N & \pi_3^r s_1 \\
John & likes Mary
\end{pmatrix} \Rightarrow N \leq \pi_3
\]

(making use of partial order)
John likes Mary

\[
\left(\begin{array}{c}
N \\
\text{John likes Mary}
\end{array} \right) \Rightarrow \left(\begin{array}{c}
\pi_3^r S_1 \\
\text{John likes Mary}
\end{array} \right)
\]

(making use of partial order)

\[
\left(\begin{array}{c}
\pi_3 \\
\text{John likes Mary}
\end{array} \right) \Rightarrow \left(\begin{array}{c}
\pi_3 \\
\text{John likes Mary}
\end{array} \right)
\]

(Move on coordinates of the tuple)
Example 1

John likes Mary

\[
\begin{pmatrix}
N & \pi_3^r s_1 \\
John & likes Mary
\end{pmatrix}
\Rightarrow
N \leq \pi_3
\]
(making use of partial order)

\[
\begin{pmatrix}
\pi_3 & \pi_3^r s_1 \\
John & likes Mary
\end{pmatrix}
\Rightarrow
(Move on coordinates of the tuple)
\]

\[
\begin{pmatrix}
\pi_3 \pi_3^r s_1 \\
John likes Mary
\end{pmatrix}
\Rightarrow
(GCon within the tuple)
John likes Mary

\[
\left(\begin{array}{c} N \\ \pi_3^r s_1 \\ \text{John likes Mary} \end{array} \right) \Rightarrow N \leq \pi_3
\]

(making use of partial order)

\[
\left(\begin{array}{c} \pi_3 \\ \pi_3^r s_1 \\ \text{John likes Mary} \end{array} \right) \Rightarrow \text{(Move on coordinates of the tuple)}
\]

\[
\left(\begin{array}{c} \pi_3 \pi_3^r s_1 \\ \text{John likes Mary} \end{array} \right) \Rightarrow \text{(GCon within the tuple)}
\]

\[
\left(\begin{array}{c} s_1 \\ \text{John likes Mary} \end{array} \right)
\]
John likes Mary - adding semantics

\[\text{John likes Mary}\]

\[\pi_3^r s_1 o_4^l \Rightarrow s_1 \text{ (here } N \leq o_4 \text{ and } N \leq \pi_3)\]
John likes Mary - adding semantics

\[\begin{array}{ccc}
\text{john} & x_1 & f & x_2 & \text{mary} \\
\text{John} & \text{likes} & \text{Mary} \\
N & \pi^r_3 s_1 o^l_4 & N & \Rightarrow s_1 \text{ (here } N \leq o_4 \text{ and } N \leq \pi_3 \text{)}
\end{array} \]

We add translation to semantic types in the following way:

\[\begin{array}{ccc}
\text{John} & N & \text{john} \\
\text{Mary} & N & \text{mary} \\
\text{likes} & \pi^r_3 s_1 o^l_4 & f(x_1, x_2) = \text{like}(x_1, x_2)
\end{array} \]
John likes Mary - adding semantics

\[john \quad x_1 \quad f \quad x_2 \quad mary \]

:\textit{John likes Mary} \\
\[N \quad \pi_3^r \quad s_1 \quad o_4^l \quad N \quad \Rightarrow s_1 \ (\text{here } N \leq o_4 \text{ and } N \leq \pi_3) \]
John likes Mary - adding semantics

\[john \ x_1 \ f \ x_2 \ mary \]
\[John \ likes \ Mary \]
\[N \ \pi_3 s_1 \ o_4^l \ N \Rightarrow s_1 \] (here \(N \leq o_4 \) and \(N \leq \pi_3 \))

Contractions according to underlinks define the substitutions. Thus in our examples we get:

\[x_1 \rightarrow john \]
\[x_2 \rightarrow mary \]
John likes Mary - adding semantics

\[\text{John} \quad \text{likes} \quad \text{Mary}\]

\[N \quad \pi_3^r s_1 o_4^l \quad N \quad \Rightarrow s_1 \quad (\text{here} \ N \leq o_4 \text{ and } N \leq \pi_3)\]

Contractions according to underlinks define the substitutions. Thus in our examples we get:

\[x_1 \rightarrow \text{John}\]
\[x_2 \rightarrow \text{Mary}\]

Now we are able to compute the semantics of the sentence \textbf{John likes Mary} by substitution in the following way:

\[f(x_1, x_2) = \text{like}(x_1, x_2) = \text{like}(\text{John}, \text{Mary})\]
the boy who likes Mary

Consider the string the boy who likes Mary with the following tuples:

\[
\begin{array}{l}
(Nn^\ell) \quad (n \quad \text{boy}) \quad (N \quad \text{Mary}) \quad (\frac{\pi^r s_1 o^\ell_4}{\text{likes}}) \quad (w \quad \text{who} \quad N \quad \epsilon) \\
(N^r Ns^\ell w^\ell \quad \epsilon)
\end{array}
\]

Then the derivation looks as follows:

\[
\begin{array}{l}
(Nn^\ell) \quad (n \quad \text{boy}) \quad (N^r Ns^\ell w^\ell \quad \epsilon) \quad (w \quad \text{who} \quad N \quad \epsilon) \quad (\frac{\pi^r s_1 o^\ell_4}{\text{likes}}) \\
(N \quad \text{Mary}) \quad \Rightarrow \quad N \leq o_4
\end{array}
\]
Consider the string **the boy who likes Mary** with the following tuples:

\[
\left(\begin{array}{c}
Nn^\ell \\
\text{the}
\end{array} \right) \quad \left(\begin{array}{c}
n^r \\
\text{boy}
\end{array} \right) \quad \left(\begin{array}{c}
N \\
\text{Mary}
\end{array} \right) \quad \left(\begin{array}{c}
\pi^r_3 s_1 o^\ell_4 \\
\text{likes}
\end{array} \right) \quad \left(\begin{array}{c}
w \\
\text{who}
\end{array} \right) \quad \left(\begin{array}{c}
N \\
\epsilon
\end{array} \right)
\]

Then the derivation looks as follows:

\[
\left(\begin{array}{c}
Nn^\ell \\
\text{the}
\end{array} \right) \quad \left(\begin{array}{c}
n^r \\
\text{boy}
\end{array} \right) \quad \left(\begin{array}{c}
N \\
\epsilon
\end{array} \right) \quad \left(\begin{array}{c}
w \\
\text{who}
\end{array} \right) \quad \left(\begin{array}{c}
\pi^r_3 s_1 o^\ell_4 \\
\text{likes}
\end{array} \right) \quad \Rightarrow \quad N \leq o_4
\]

\[
\left(\begin{array}{c}
Nn^\ell \\
\text{the}
\end{array} \right) \quad \left(\begin{array}{c}
n^r \\
\text{boy}
\end{array} \right) \quad \left(\begin{array}{c}
N \\
\epsilon
\end{array} \right) \quad \left(\begin{array}{c}
w \\
\text{who}
\end{array} \right) \quad \left(\begin{array}{c}
\pi^r_3 s_1 o^\ell_4 \\
\text{likes}
\end{array} \right) \quad \Rightarrow \quad o_4
\]
the boy who likes Mary

\[
\left(\begin{array}{c}
Nn^\ell n \\
\text{the boy}
\end{array} \right) \left(\begin{array}{c}
N^r Ns^\ell w^\ell \\
\epsilon
\end{array} \right) \left(\begin{array}{c}
w \\
\text{who}
\end{array} \right) \left(\begin{array}{c}
N \\
\epsilon
\end{array} \right) \left(\begin{array}{c}
\pi_3^r s_1 o_4^\ell o_4 \\
\text{likes Mary}
\end{array} \right) \Rightarrow
\]
the boy who likes Mary

\[
\left(\begin{array}{c}
Nn^\ell n \\
the \ boy
\end{array} \right) \left(\begin{array}{c}
N^rNs^\ell w^\ell \\
\epsilon
\end{array} \right) \left(\begin{array}{c}
w \\
who
\end{array} \right) \left(\frac{N}{\epsilon} \right) \left(\frac{\pi^r_3 s_1 o_4^\ell o_4}{\text{likes Mary}} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
N^\ell \\
the \ boy
\end{array} \right) \left(\begin{array}{c}
N^rNs^\ell w^\ell \\
\epsilon
\end{array} \right) \left(\begin{array}{c}
w \\
who
\end{array} \right) \left(\frac{N}{\epsilon} \right) \left(\frac{\pi^r_3 s_1}{\text{likes Mary}} \right) \Rightarrow
\]
the boy who likes Mary

\[
\left(N n^\ell n \right) \cdot \left(N^r N s^\ell w^\ell \right) \cdot \left(w \; \frac{N}{\epsilon} \right) \cdot \left(\frac{\pi^r s_1 o_4^\ell o_4^\ell}{\text{likes Mary}} \right) \Rightarrow
\]

\[
\left(N \right) \cdot \left(N^r N s^\ell w^\ell \right) \cdot \left(w \; \frac{N}{\epsilon} \right) \cdot \left(\frac{\pi^r s_1}{\text{likes Mary}} \right) \Rightarrow
\]

\[
\left(N \right) \cdot \left(N^r N s^\ell w^\ell \right) \cdot \left(w \; \frac{N}{\epsilon} \; \frac{\pi^r s_1}{\text{likes Mary}} \right) \Rightarrow \frac{N}{\pi_3} \leq \frac{\pi_3}{\pi_3}
\]
the boy who likes Mary

(\(Nn^\ell n\)) \((\ N^r Ns^\ell w^\ell\)) \((\ w \ N \ \epsilon\)) \((\ \frac{\pi^r s_1 o_4}{\ell} o_4 \likes Mary\)) \Rightarrow

(\(N\)) \((\ N^r Ns^\ell w^\ell\)) \((\ w \ N \ \epsilon\)) \((\ \frac{\pi^r s_1}{\ell} \likes Mary\)) \Rightarrow

(\(N\)) \((\ N^r Ns^\ell w^\ell\)) \((\ w \ N \ \epsilon\)) \((\ \frac{\pi^r s_1}{\ell} \likes Mary\)) \Rightarrow \(N \leq \pi_3\)

(\(NN^r Ns^\ell w^\ell\)) \((\ \frac{\pi_3 \pi^r s_1}{\ell} \likes Mary \ w \)) \Rightarrow
the boy who likes Mary

\[
\left(\begin{array}{c}
\text{the boy} \\
N_n^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{who} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{\pi_s^r \epsilon}{o_4^l}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{who} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{\pi_s^r \epsilon}{\pi_3^l}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{who} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{\pi_s^r \epsilon}{\pi_3^l}
\end{array} \right) \Rightarrow \frac{N}{\pi_3^l}
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
NN^r \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{\pi_3^r \pi_s^l}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]

\[
\left(\begin{array}{c}
\text{the boy} \\
N_s^l \epsilon
\end{array} \right) \left(\begin{array}{c}
\text{likes Mary} \\
\frac{s_1 \epsilon}{\pi_3^r}
\end{array} \right) \Rightarrow
\]
the boy who likes Mary

\[
\begin{pmatrix}
Ns^\ell w^\ell & s_1 & w \\
the boy & likes Mary & who
\end{pmatrix}
\Rightarrow
\]
the boy who likes Mary

\[
\begin{pmatrix}
Ns^l w^l & s_1 & w \\
the \ boy & likes \ Mary & who
\end{pmatrix} \Rightarrow
\]

\[
\begin{pmatrix}
Ns^l w^l w & s_1 \\
the \ boy \ who & likes \ Mary
\end{pmatrix} \Rightarrow
\]
the boy who likes Mary

\[
\begin{pmatrix}
Ns^l w^l & s_1 & w \\
\text{the boy} & \text{likes Mary} & \text{who}
\end{pmatrix} \Rightarrow
\]

\[
\begin{pmatrix}
Ns^l w^l w & s_1 \\
\text{the boy who} & \text{likes Mary}
\end{pmatrix} \Rightarrow
\]

\[
\begin{pmatrix}
Ns^l & s_1 \\
\text{the boy who} & \text{likes Mary}
\end{pmatrix} \Rightarrow
\]
the boy who likes Mary

\[
\left(\begin{array}{c} Ns^l w^l \\ \text{the boy} \\ \text{likes Mary} \\ \text{who} \end{array} \right) \Rightarrow \\
\left(\begin{array}{c} Ns^l \ell w^l w \\ \text{the boy} \\ \text{who} \\ \text{likes Mary} \end{array} \right) \Rightarrow \\
\left(\begin{array}{c} Ns^l \\ \text{the boy} \\ \text{who} \\ \text{likes Mary} \end{array} \right) \Rightarrow \\
\left(\begin{array}{c} Ns^l s_1 \\ \text{the boy who likes Mary} \end{array} \right) \Rightarrow s_1 \leq s
\]
the boy who likes Mary

\[
\left(Ns^l w^l \begin{array}{c} s_1 \\
\text{the boy likes Mary} \\
\text{who} \end{array} w \right) \Rightarrow
\]

\[
\left(Ns^l w^l w \begin{array}{c} s_1 \\
\text{the boy who} \\
\text{likes Mary} \end{array} \right) \Rightarrow
\]

\[
\left(Ns^l \begin{array}{c} s_1 \\
\text{the boy who} \\
\text{likes Mary} \end{array} \right) \Rightarrow
\]

\[
\left(Ns^l s_1 \begin{array}{c} \text{the boy who likes Mary} \end{array} \right) \Rightarrow s_1 \leq s
\]

\[
\left(N \begin{array}{c} \text{the boy who likes Mary} \end{array} \right)
\]

Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

Example 1
Examples 2 and 3
Examples 4 and 5
the boy who likes Mary - adding semantics

\[f \times \text{boy} \ y_1 \ h \ y_2 \ y_3 \ \epsilon \ \text{who} \ \epsilon \ \text{likes} \ \text{Mary} \]

Semantic types added are as follows:

<table>
<thead>
<tr>
<th>the</th>
<th>(Nn^l)</th>
<th>(f(x) = id(x) = x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>boy</td>
<td>(n)</td>
<td>boy</td>
</tr>
<tr>
<td>Mary</td>
<td>(N)</td>
<td>mary</td>
</tr>
<tr>
<td>likes</td>
<td>(\pi_3^r s_1 o_4^l)</td>
<td>(g(x_1, x_2) = \text{like}(x_1, x_2))</td>
</tr>
<tr>
<td>who</td>
<td>(w)</td>
<td>-</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>(N)</td>
<td>-</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>(N^r Ns^l w^l)</td>
<td>(h(y_1, y_2, y_3) = y_1 \land y_2)</td>
</tr>
</tbody>
</table>
the boy who likes Mary - adding semantics

\[
\begin{align*}
 f \ x & \quad \text{boy} & \quad y_1 & \quad h \ y_2 & \quad y_3 & - & - & \quad x_1 \ g \ x_2 & \quad \text{mary} \\
 \text{the} & \quad \text{boy} & \quad \epsilon & \quad \text{who} & \quad \epsilon & \quad \text{likes} & \quad \text{Mary} \\
 N \ n^l & \quad \text{N} & \quad N^r & \quad N \ s^l & \quad w^l & \quad w & \quad N & \quad \pi_3^r \ s_1 \ o_4^l & \quad N & \quad \Rightarrow & \quad N
\end{align*}
\]

Contractions according to the links define substitution:

\[
\begin{align*}
 x & \rightarrow \text{boy} \\
 x_1 & \rightarrow - \\
 x_2 & \rightarrow \text{mary} \\
 y_1 & \rightarrow f(x) \\
 y_2 & \rightarrow g(x_1, x_2)
\end{align*}
\]
Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

the boy who likes Mary - adding semantics

\[
f(x) = id(x) = x \\
\text{boy} \quad n \\
\text{Mary} \quad N \\
\text{likes} \quad \pi_3 s_1 o_4 \\
\text{who} \quad w \\
\epsilon \quad N \\
\epsilon \quad N^r N s^l w^l \\
h(y_1, y_2, y_3) = y_1 \land y_2
\]
the boy who likes Mary - adding semantics

\[
f(x) = \text{id}(x) = x
\]

\[
\text{boy} \quad \text{boy} \\
\text{Mary} \quad \text{mary} \\
\text{likes} \quad g(x_1, x_2) = \text{like}(x_1, x_2) \\
\text{who} \quad - \\
\epsilon \quad - \\
\epsilon \quad -
\]

\[
h(y_1, y_2, y_3) = y_1 \land y_2
\]
the boy who likes Mary - adding semantics

\[f(x) = id(x) = x \]

\[g(x_1, x_2) = \text{like}(x_1, x_2) \]

\[h(y_1, y_2, y_3) = y_1 \land y_2 \]

\[h(y_1, y_2, y_3) = y_1 \land y_2 = \]
the boy who likes Mary - adding semantics

\[
f(x) = \text{id}(x) = x
\]

\[
\text{boy} \quad n \quad \text{boy}
\]

\[
\text{Mary} \quad N \quad \text{mary}
\]

\[
\text{likes} \quad \pi_3 s_1 o^l_4 \quad g(x_1, x_2) = \text{like}(x_1, x_2)
\]

\[
\text{who} \quad w \quad -
\]

\[
\epsilon \quad N \quad -
\]

\[
\epsilon \quad N^r N s^l w^l \quad h(y_1, y_2, y_3) = y_1 \land y_2
\]

\[
h(y_1, y_2, y_3) = y_1 \land y_2 = f(x) \land g(x_1, x_2) =
\]
the boy who likes Mary - adding semantics

\[f(x) = \text{id}(x) = x \]

\[g(x_1, x_2) = \text{like}(x_1, x_2) \]

\[h(y_1, y_2, y_3) = y_1 \land y_2 = f(x) \land g(x_1, x_2) = \text{id}(x) \land \text{like}(x_1, x_2) = \]
the boy who likes Mary - adding semantics

\[f(x) = \text{id}(x) = x \]

\[h(y_1, y_2, y_3) = y_1 \land y_2 = f(x) \land g(x_1, x_2) = \text{id}(x) \land \text{like}(x_1, x_2) = \text{id}(\text{boy}) \land \text{like}(\text{--}, \text{mary}) = \]
Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

the boy who likes Mary - adding semantics

\[f(x) \cdot \text{boy} \cdot y_1 \cdot h \cdot y_2 \cdot y_3 = x_1 \cdot g(x_2) \cdot \text{mary} \]

\[\begin{align*}
\text{the} &\quad Nn^l
\text{boy} &\quad n
\text{Mary} &\quad N
\text{likes} &\quad \pi_3^r s_1^l o_4^l
\text{who} &\quad w
\epsilon &\quad N
\epsilon &\quad N^r Ns^l w^l
\end{align*} \]

\[\Rightarrow N \]

\[h(y_1, y_2, y_3) = y_1 \land y_2 = f(x) \land g(x_1, x_2) = id(x) \land \text{like}(x_1, x_2) = id(\text{boy}) \land \text{like}(_ , \text{mary}) = \text{boy} \land \text{like}(_ , \text{mary}) \]
the boy whom Mary likes

\[
f(x) \quad \text{boy} \quad y_1 \quad h \quad y_2 \quad y_3 \quad \text{—} \quad \text{mary} \quad x_1 \quad g \quad x_2 \quad \text{—}
\]

\[
\text{the boy} \quad \epsilon \quad \text{whom Mary likes} \quad \epsilon
\]

\[
N \ n^l \quad n \quad N^r \ N \ s^l \ w^l \quad w \quad N \quad \pi^r_3 \ s_1 \ o^l_4 \quad o^l_4 \quad \Rightarrow \ N
\]

\[
\text{the} \quad N^n^l \quad f(x) = \text{id}(x) = x
\]

\[
\text{boy} \quad n \quad \text{boy}
\]

\[
\text{Mary} \quad N \quad \text{mary}
\]

\[
\text{likes} \quad \pi^r_3 \ s_1 \ o^l_4 \quad g(x_1, x_2) = \text{like}(x_1, x_2)
\]

\[
\text{whom} \quad w \quad \text{—}
\]

\[
\epsilon \quad o^l_4 \quad \text{—}
\]

\[
\epsilon \quad N^r \ N s^l \ w^l \quad h(y_1, y_2, y_3) = y_1 \land y_2
\]
the boy whom Mary likes

\[
f(x) \quad \text{boy} \quad y_1 \quad h \quad y_2 \quad y_3 \quad - \quad \text{mary} \quad x_1 g x_2 \quad -
\]

\[
\text{the boy} \quad \epsilon \quad \text{whom} \quad \text{Mary} \quad \text{likes} \quad \epsilon
\]

\[
N \quad n^\ell \quad n \quad N^r \quad N \quad s^\ell \quad w^\ell \quad w \quad N \quad \pi^r_3 \quad s_1 \quad o^l_4 \quad o_4 \quad \Rightarrow \quad N
\]

\[
\text{the} \quad N n^\ell \quad f(x) = \text{id}(x) = x
\]

\[
\text{boy} \quad n \quad \text{boy}
\]

\[
\text{Mary} \quad N \quad \text{mary}
\]

\[
\text{likes} \quad \pi^r_3 s_1 o^l_4 \quad g(x_1, x_2) = \text{like}(x_1, x_2)
\]

\[
\text{whom} \quad w \quad -
\]

\[
\epsilon \quad o_4 \quad -
\]

\[
\epsilon \quad N^r N s^\ell w^\ell \quad h(y_1, y_2, y_3) = y_1 \land y_2
\]

\[
h(y_1, y_2, y_3) = y_1 \land y_2 = f(x) \land g(x_1, x_2) = \text{id}(x) \land \text{like}(x_1, x_2) = \text{id(boy)} \land \text{like(mary, -)} = \text{boy} \land \text{like(mary, -)}
\]
Calculus of pregroups
Other approaches
Tupled pregroup grammars
Examples

Example 1
Examples 2 and 3
Examples 4 and 5

the boy whose mother liked John

\[
f(x) = id(x) \quad g(x_1, x_2) = \text{like}(x_1, x_2) \\
\text{have}(\neg, y_3 \land y_2) \quad N \Rightarrow
\]
the boy whose mother liked John

\[
\begin{align*}
\text{the boy} & \quad \epsilon \\
\text{whose mother} & \quad \epsilon \\
\text{liked John} & \quad \text{id(b o y)} \land \text{have(−, mother \land like(−, john))}
\end{align*}
\]

\[
\begin{align*}
h(y_1, y_2, y_3) &= y_1 \land \text{have}(−, y_3 \land y_2) = f(x) \land \text{have}(−, j(z) \land g(x_1, x_2)) = \\
&\quad \text{id}(x) \land \text{have}(−, \text{id}(z) \land \text{like}(x_1, x_2)) = \\
&\quad \text{id}(\text{boy}) \land \text{have}(−, \text{id}(\text{mother}) \land \text{like}(−, \text{john})) = \\
&\quad \text{boy} \land \text{have}(−, \text{mother} \land \text{like}(−, \text{john}))
\end{align*}
\]
the boy whose mother John liked

\[f(x) = id(x) \]
\[g(x_1, x_2) = \text{like}(x_1, x_2) \]
\[j(z) = id(z) \]
\[h(y_1, y_2, y_3) = y_1 \land \text{have}(\neg, y_3 \land y_2) \]
the boy whose mother John liked

\[
\begin{align*}
\text{the} & \quad Nn^l \quad f(x) = id(x) \\
\text{liked} & \quad \pi_3^r s_2 o_4^l \quad g(x_1, x_2) = \text{like}(x_1, x_2) \\
\text{whose} & \quad \text{wn}^l \quad j(z) = id(z) \\
\epsilon & \quad N \quad - \\
\epsilon & \quad N^r Ns^l \tilde{w}^l \quad h(y_1, y_2, y_3) = y_1 \land \text{have}(\neg, y_3 \land y_2) \\
\end{align*}
\]

\[
\begin{align*}
h(y_1, y_2, y_3) &= y_1 \land \text{have}(\neg, y_3 \land y_2) \equiv f(x) \land \text{have}(\neg, j(z) \land g(x_1, x_2)) = \\
&= id(x) \land \text{have}(\neg, id(z) \land \text{like}(x_1, x_2)) = \\
&= id(\text{boy}) \land \text{have}(\neg, id(\text{mother}) \land \text{like}(\text{john}, \neg)) = \\
&= \text{boy} \land \text{have}(\neg, \text{mother} \land \text{like}(\text{john}, \neg))
\end{align*}
\]
the boy who has a mother who liked John

\[f \times \text{boy} \ y_1 \ h \ y_2 \ y_3 \quad \epsilon \quad \text{who} \ \epsilon \quad \text{has} \ \epsilon \quad x_1 \ g \ x_2 \ f \ y \ \text{mother} \ y_4 \ h \ y_5 \ y_6 \quad \epsilon \quad \text{who} \ \epsilon \quad \text{liked} \ \epsilon \quad \text{john} \]

\[(y_1, y_2, y_3) = y_1 \land y_2 \]

\[g(x_1, x_2) = \text{have}(x_1, x_2) \]

\[h(y_4, y_5, y_6) = y_4 \land y_5 \]

\[g(x_1, x_2) = \text{like}(x_1, x_2) \]
the boy who has a mother who liked John

\[h(y_1, y_2, y_3) = y_1 \land y_2 \]

\[id(x) \land \text{have}(x_1, x_2) = \text{id(boy)} \land \text{have}(\neg, h(y_4, y_5, y_6)) = \text{boy} \land \text{have}(\neg, y_4 \land y_5) = \text{boy} \land \text{have}(\neg, f(y) \land j(z_1, z_2)) = \text{boy} \land \text{have}(\neg, \text{id(y)} \land \text{like}(z_1, z_2)) = \text{boy} \land \text{have}(\neg, \text{id(mother)} \land \text{like}(\neg, \text{john})) = \text{boy} \land \text{have}(\neg, \text{mother} \land \text{like}(\neg, \text{john})) \]
the boy who has a mother whom John liked

\(f(x) \) | \(\text{boy} \) | \(y_1 \) | \(h \) | \(y_2 \) | \(y_3 \) | \(\epsilon \) | \(\text{who} \) | \(\epsilon \) | \(x_1 \) | \(g \) | \(x_2 \) | \(f \) | \(y \) | \(\text{mother} \) | \(y_4 \) | \(h \) | \(y_5 \) | \(y_6 \) | \(\epsilon \) | \(\text{whom} \) | \(\text{John} \) | \(z_1 \) | \(j \) | \(z_2 \) | \(\epsilon \) \\
\(N^n \) | \(n \) | \(N^r \) | \(N^s \) | \(w \) | \(w \) | \(N \) | \(\pi_3 s_1 o_4 \) | \(N^n \) | \(n \) | \(N^r \) | \(N^s \) | \(w \) | \(w \) | \(N \) | \(\pi_3 s_2 o_4 \) | \(N \)

\[
\epsilon \quad N^r N^s w^l \quad \Rightarrow
\]

\[
\epsilon \quad N^r N^s w^l \quad h(y_1, y_2, y_3) = y_1 \land y_2
\]

\[
\text{has} \quad \pi_3 s_2 o_4 \quad g(x_1, x_2) = \text{have}(x_1, x_2)
\]

\[
\epsilon \quad N^r N^s w^l \quad h(y_4, y_5, y_6) = y_4 \land y_5
\]

\[
\text{liked} \quad \pi_3 s_2 o_4 \quad g(x_1, x_2) = \text{like}(x_1, x_2)
\]
the boy who has a mother whom John liked

\[
\begin{align*}
&f \circ \text{boy} = y_1 \land y_2 \\
&\text{has} = \pi_3^r s_2 o_4^l \\
&\epsilon \circ N^r N s^l w^l = h(y_1, y_2, y_3) = y_1 \land y_2 \\
&\epsilon \circ N^r N s^l w^l = g(x_1, x_2) = \text{have}(x_1, x_2) \\
&\epsilon \circ N^r N s^l w^l = h(y_4, y_5, y_6) = y_4 \land y_5 \\
&\epsilon \circ N^r N s^l w^l = g(x_1, x_2) = \text{like}(x_1, x_2)
\end{align*}
\]

\[
\begin{align*}
&h(y_1, y_2, y_3) = y_1 \land y_2 = f(x) \land g(x_1, x_2) = \\
&id(x) \land \text{have}(x_1, x_2) = \\
&id(\text{boy}) \land \text{have}(\epsilon, h(y_4, y_5, y_6)) = \\
\text{boy} \land \text{have}(\epsilon, y_4 \land y_5) = \\
\text{boy} \land \text{have}(\epsilon, f(y) \land j(z_1, z_2)) = \\
\text{boy} \land \text{have}(\epsilon, id(y) \land \text{like}(z_1, z_2)) = \\
\text{boy} \land \text{have}(\epsilon, id(\text{mother}) \land \text{like}(\text{john}, \epsilon)) = \\
\text{boy} \land \text{have}(\epsilon, \text{mother} \land \text{like}(\text{john}, \epsilon))
\end{align*}
\]
want(audience, finish(speaker, talk))
want(audience, finish(speaker, talk))

Thank you!