Individual security and network design

Diego Cerdeiro Marcin Dziubiński Sanjeev Goyal

FIT 2015
Motivation

- Networks often face external threats in form of strategic or random attacks
- The attacks can be prevented by protecting selected nodes of the network
- Decentralizing protection decisions leads to inefficiencies
- Can these inefficiencies be minimized by properly choosing the network topology?
Networks

- $G = (V, E)$: undirected graph over V, V – set of nodes, $|V| = n$, E – set of edges over V, $E \subseteq \{ij : i, j \in V\}$
- Given $U \subseteq V$, $E[U] = \{ij \in E : i, j \in U\}$, $G[U] = (U, E[U])$: subgraph induced by U
- $\mathcal{G}(U)$: set of all graphs over U
- Given $X \subseteq N$, $G - X = G[V \setminus X]$
- Component in G is a maximal set of nodes $C \subseteq V$ s.t. for all $i, j \in C$, i and j are connected
- $\mathcal{C}(G)$: the set of all components in G
Network value function

- (Network) value function

\[\Phi : \bigcup_{U \subseteq V} G(U) \rightarrow \mathbb{R} \]

assigns numeric value \(\Phi(G) \) to network \(G \in \bigcup_{U \subseteq V} G(U) \)

- We consider value functions of the form

\[\Phi(G) = \sum_{C \in \mathcal{C}(G)} f(|C|), \]

where \(f \) is strictly increasing, strictly convex and \(f(0) = 0 \)

- Example 1: \(f(x) = x^2 \) (Metcalfe’s law)
- Example 2: \(f(x) = 2^x - 1 \) (≈ Reed’s law)
Defence and attack

- Defence is perfect: defended nodes cannot be removed
- Using defence has cost $c > 0$
- Given network G and set of defended nodes $\Delta \subseteq V$, $G - \Delta$ is called **attack network**
- Attack targets a single node $x \in V$
- This removes set of nodes

$$E_x(G|\Delta) = \begin{cases} \emptyset & \text{if } x \in \Delta \\ C_x(G - \Delta) & \text{otherwise} \end{cases}$$
Defence and attack
Defence and attack

\[g \]
Defence and attack

\(g, E_x(g|\Delta)\)
Defence and attack

$g - \Delta$
Defence and attack

\[g - E_x(g|\Delta) \]
Exogenous network

- It is known that when the network is fixed, decentralization of defence decisions leads to inefficiencies
- Both underprotection and overprotection are possible in equilibrium of network defence game
- What happens when the designer can choose the network prior to network defence game?
The game

- There are \(n + 2 \) players: the designer (\(D \)), the nodes (\(V \)) and the adversary (\(A \))

- The game has three stages:
 1. \(D \) chooses network \(G \in \mathcal{G}(V) \)
 2. Nodes choose simultaneously whether to protect or not, this determines the set of defended nodes \(\Delta \)
 3. \(A \) chooses a node \(x \in V \) to attack

- The attack spreads which leads to residual network \(G - E_x(G|\Delta) \)
Preferences and payoffs: Designer

Given network $G \in \mathcal{G}(V)$, the set of defended nodes $\Delta \subseteq V$ and attack $x \in V$, payoff to D is

$$\Pi^D(G, \Delta, x) = \Phi(G - E_x(G|\Delta)) - c|\Delta|$$
Given network $G \in \mathcal{G}(V)$, the set of defended nodes $\Delta \subseteq V$ and attack $x \in V$, payoff to node $i \in V$ is

$$\Pi^i(G, \Delta, x) = \begin{cases}
\frac{f(|C_i(G - E_x(G|\Delta))|)}{|C_i(G - E_x(G|\Delta))|} - [x \in \Delta] \cdot c, & \text{if } i \neq x \\
0, & \text{otherwise}
\end{cases}$$
Preferences and payoffs: Adversary

- Given network $G \in \mathcal{G}(V)$, the set of defended nodes $\Delta \subseteq V$ and attack $x \in V$, payoff to A is

$$\Pi^A(G, \Delta, x) = -\phi(G - E_x(G|\Delta))$$
Proposition (1)

Let \((G, \Delta)\) be optimal defended network chosen by the designer and let

- If \(0 < c < c_1(n)\), then \(g\) is connected and \(\Delta = V\)
- If \(c_1(n) < c < c_2(n)\), then \(g\) is a star and \(\Delta = \{i\}\), where \(i\) is the centre of \(g\)
- If \(c_2(n) < c\), then \(g\) has \(q^* - 1\) components of size \(\lfloor \frac{n}{q^* - 1} \rfloor\) and one of size \(n \mod (q^* - 1)\), \(\Delta = \emptyset\)
Optimal network with decentralized defence

Let $\Gamma(G)$ denote the nodes-adversary subgame ensuing after network G is chosen.

Lemma (1)

For any G and c, $\Gamma(G)$ has an equilibrium in pure strategies.

Let $\mathcal{E}(G, c)$ denote the set of all equilibria of $\Gamma(G)$.
Optimal network with decentralized defence

Definition
Given $G \in \mathcal{G}(n)$, equilibrium $(\Delta, x) \in \mathcal{E}(G, c)$ is welfare maximising iff

$$\Pi^D(G, \Delta, x) = \max_{(\Delta', x') \in \mathcal{E}(G, c)} \Pi^D(G, \Delta', x')$$

and $(\Delta, x) \in \mathcal{E}(G, c)$ is welfare minimising iff

$$\Pi^D(G, \Delta, x) = \min_{(\Delta', x') \in \mathcal{E}(G, c)} \Pi^D(G, \Delta', x')$$
Optimal network with decentralized defence

- There are three main reasons to inefficiencies due to decentralization:
 1. Underprotection, due to positive externalities (e.g. $f(x) = x^2$, $n < c < (n-1)^2$ and centre of a star network)
 2. Overprotection, due to negative externalities (e.g. $f(x) = x^2$, $2n-1 < n-1 < n$ and all nodes of star network)
 3. Coordination on wrong equilibria (e.g. connected network and all- or no-nodes protect)
Optimal network with decentralized defence

- There are three main reasons to inefficiencies due to decentralization
 1. Underprotection, due to positive externalities (e.g.
 \[f(x) = x^2, \quad n < c < (n - 1)^2 \] and centre of a star network)
There are three main reasons to inefficiencies due to decentralization

1. **Underprotection**, due to positive externalities (e.g. \(f(x) = x^2 \), \(n < c < (n - 1)^2 \) and centre of a star network)
2. **Overprotection**, due to negative externalities (e.g. \(f(x) = x^2 \), \(\frac{2n-1}{n-1} < c < n - 1 \) and all nodes of star network)
Optimal network with decentralized defence

- There are three main reasons to inefficiencies due to decentralization
 1. **Underprotection**, due to positive externalities (e.g.
 \[f(x) = x^2, \quad n < c < (n - 1)^2 \] and centre of a star network)
 2. **Overprotection**, due to negative externalities (e.g.
 \[f(x) = x^2, \quad \frac{2n-1}{n-1} < c < n - 1 \] and all nodes of star network)
 3. **Coordination on wrong equilibria** (e.g. connected network and all- or no-nodes protect)
There are three main reasons to inefficiencies due to decentralization:

1. **Underprotection** (e.g. \(f(x) = x^2, \ n < c < (n - 1)^2 \) and centre of a star network)

2. **Overprotection**, due to negative externalities (e.g. \(f(x) = x^2, \ \frac{2n-1}{n-1} < c < n - 1 \) and all nodes of star network)

3. **Coordination on wrong equilibria** (e.g. connected network and all- or no-nodes protect)

Can the designer mitigate these problems by carefully choosing the network topology?

How well can s/he do?
Optimal networks under welfare maximising equilibria

- What networks should be chosen assuming that the nodes and A choose a welfare maximising equilibrium in their subgame?
- The only problem is the range of costs \((c_1(n), c_2(n))\) with centrally protected star being first best
- We need to avoid overprotection \(\rightarrow\) reduce incentives to protect
Optimal networks under welfare maximising equilibria

Example: \(f(x) = x^2, \ n = 96, \ c = 30 \)
Optimal networks under welfare minimising equilibria

- What networks should be chosen assuming that the nodes and \textbf{A} choose a welfare minimising equilibrium in their subgame?
- There is no problem for high costs
- Splitting the network still works for intermediate costs (the equilibrium outcome is unique on the split network)
- When costs of protection are low we need to avoid the coordination problem
- Equilibrium uniqueness can be obtained by properly choosing network topology
Optimal networks under welfare minimising equilibria

Definition \((k\text{-critical node})\)

Given a connected network \(G \in \mathcal{G}(V)\) node \(i \in V\) is \(k\)-critical iff

\[
\max_{C \in \mathcal{C}(G \setminus \{i\})} |C| = k
\]

- \(k\)-critical node, if it protects, can secure at least \(n - k\) nodes from being removed
Optimal networks under welfare minimizing equilibria

\(f(x) = x^2, \ n = 19, \ 9 < c < 10 \)
Lemma (7)

Let $G \in \mathcal{G}(V)$ be a connected network. If all nodes protect in every equilibrium of $\Gamma(G)$, then G has a k-critical node where k satisfies

$$\frac{f(n-k)}{n-k} > c$$

- Existence of k-critical node with $\frac{f(n-k)}{n-k} > c$ is a necessary but not sufficient condition for full protection in every equilibrium of $\Gamma(G)$
Optimal networks under welfare minimising equilibria

\[f(x) = x^2, \quad n = 19, \quad 9 < c < 10 \]
Lemma (8)

Let $G \in \mathcal{G}(V)$ be a connected network and k satisfy $\frac{f(n-k)}{n-k} > c$. If for all $i \in V$, either i is k-critical or i has link to a k-critical node, then all nodes protect in every equilibrium of $\Gamma(g)$.

Optimal networks under welfare minimising equilibria

\[f(x) = x^2, \quad n = 19, \quad 9 < c < 10 \]
Optimal networks under welfare minimising equilibria

\[f(x) = x^2, \quad n = 19, \quad 9 < c < 10 \]
Interaction design

- The presented problem is an example of a more general idea.
- Given a type of local interactions (game) can we enforce desired outcomes by properly choosing connections between nodes?