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Satisfiability of tree patterns: P or NP?

a

b

b c

−→

a

c

c b

b b

c

b

Problem
Can given pattern π be matched in
some tree from regular language L?



Semantics 1: homomorphisms

Pattern π is matched in tree T if there is
a homomorphism h : π → T .

(Preserves labels, child and descendant relations.)
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I XPath(/,//, []), query language for XML docs [Miklau, Suciu ’02]

a[//b]/[//b,c] (XML docs are trees)

I Conjunctive queries over trees [Gottlob, Koch, Schultz ’04]

∃x1 · · · ∃x5 a(x1) ∧ b(x3) ∧ b(x4) ∧ c(x5)∧
∧ child(x1, x2) ∧ desc(x1, x3)∧
∧ desc(x2, x4) ∧ child(x2, x5)
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Semantics 2: injective

Pattern π is matched in tree T if there is
an injective homomorphism h : π → T .

(All nodes mapped to different tree nodes.)
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I incomplete information about XML docs in DOM model
[Barceló, Libkin, Poggi, Sirangelo ’09]

I nodes have unique IDs

I labels and relations may be lost

I when ID is lost, node is lost

pattern π: incomplete XML doc;
regular language L: correct docs (schema);
π is satisfiable iff incomplete doc extends to a correct doc
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Regular languages

Sets of finite labelled unranked trees

I definable in monadic second order logic;
I recognizable by automata;
I generated by RelaxNG (covers DTD, XSM).

Define several types of trees, each specified (recursively) by

I the label of the root,
I possible sequences of immediate subtree types (regexp);

and choose some of the types to form your language.

Example: a-only path from root to leaf, b’s elsewhere

I type τ : root label a, immediate subtree types σ∗τσ∗ + ε;
I type σ: root label b, immediate subtree types σ∗;
I choose: τ
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Satisfiability of tree patterns: complexity landscape

Semantics Consistency (fixed L) Satisfiability (given L)

Homo-
morphism

NP-complete, even child-only
[Benedikt, Fan, Geerts ’05]

NP-complete

Can find polynomial witness.

Can reduce NP-complete problem:

does given regular expression α
generate a word using all letters in α.

Injective

?
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Zooming in on consistency under injective semantics

[Barceló, Libkin, Poggi, Sirangelo ’09]

I PTIME without descendant.

I Can given set of words be matched disjointly in a word from L?

[Kopczyński ’11]

I PTIME with ≤ 1 descendant on each branch.

I Can given set of trees be matched disjointly in a tree from L?

[David, Francis, Murlak ’14] (this work)

I ≤ 2 descendants on each branch: NP-complete;

I PTIME (FPT) with descendant only (without child)
I works for injective and homomorphism semantics,
I extends to patterns with sibling order (following-sibling).
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On the hardness proof xbeg
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Challenges

1. Our FPT algorithm has complexity 22
‖L‖ · poly(‖π‖);

the NP upper bound gives complexity 2poly(‖L‖,‖π‖) .

Inherent trade-off, or can this be reconciled?

2. Assuming we stick to descendant and following sibling, is
consistency still tractable for patterns that are DAGs, not trees?


