Consistency of injective tree patterns

Claire David Nadime Francis Filip Murlak U. Paris-Est Marne ENS Cachan U. Warsaw

FIT 2015, Warsaw

Satisfiability of tree patterns: P or NP?

Problem

Can given pattern π be matched in some tree from regular language L?

Pattern π is matched in tree T if there is a homomorphism $h: \pi \to T$.

(Preserves labels, child and descendant relations.)

Pattern π is matched in tree T if there is a homomorphism $h: \pi \to T$.

(Preserves labels, child and descendant relations.)

XPath(/,//, []), query language for XML docs [Miklau, Suciu '02]
 a[//b]/[//b,c] (XML docs are trees)

Pattern π is matched in tree T if there is a homomorphism $h: \pi \to T$.

(Preserves labels, child and descendant relations.)

- XPath(/,//, []), query language for XML docs [Miklau, Suciu '02]
 a[//b]/[//b,c] (XML docs are trees)
- Conjunctive queries over trees [Gottlob, Koch, Schultz '04]

$$\exists x_1 \cdots \exists x_5 \ a(x_1) \land b(x_3) \land b(x_4) \land c(x_5) \land \\ \land child(x_1, x_2) \land desc(x_1, x_3) \land \\ \land desc(x_2, x_4) \land child(x_2, x_5)$$

Pattern π is matched in tree T if there is a homomorphism $h: \pi \to T$.

(Preserves labels, child and descendant relations.)

- XPath(/,//, []), query language for XML docs [Miklau, Suciu '02]
 a[//b]/[//b,c] (XML docs are trees)
- Conjunctive queries over trees [Gottlob, Koch, Schultz '04]

$$\exists x_1 \cdots \exists x_5 \ a(x_1) \land b(x_3) \land b(x_4) \land c(x_5) \land \\ \land child(x_1, x_2) \land desc(x_1, x_3) \land \\ \land desc(x_2, x_4) \land child(x_2, x_5)$$

Semantics 2: injective

Pattern π is matched in tree T if there is an injective homomorphism $h: \pi \to T$.

(All nodes mapped to different tree nodes.)

Semantics 2: injective

Pattern π is matched in tree T if there is an injective homomorphism $h: \pi \to T$. (All nodes mapped to different tree nodes.)

- incomplete information about XML docs in DOM model [Barceló, Libkin, Poggi, Sirangelo '09]
 - nodes have unique IDs
 - labels and relations may be lost
 - when ID is lost, node is lost

pattern π : incomplete XML doc;

regular language L: correct docs (schema);

 π is satisfiable iff incomplete doc extends to a correct doc

Regular languages

Sets of finite labelled unranked trees

- definable in monadic second order logic;
- recognizable by automata;
- generated by RelaxNG (covers DTD, XSM).

Regular languages

Sets of finite labelled unranked trees

- definable in monadic second order logic;
- recognizable by automata;
- generated by RelaxNG (covers DTD, XSM).

Define several types of trees, each specified (recursively) by

- the label of the root,
- possible sequences of immediate subtree types (regexp);

and choose some of the types to form your language.

Regular languages

Sets of finite labelled unranked trees

- definable in monadic second order logic;
- recognizable by automata;
- generated by RelaxNG (covers DTD, XSM).

Define several types of trees, each specified (recursively) by

- the label of the root,
- possible sequences of immediate subtree types (regexp);

and choose some of the types to form your language.

Example: *a*-only path from root to leaf, *b*'s elsewhere

- type τ : root label *a*, immediate subtree types $\sigma^* \tau \sigma^* + \epsilon$;
- type σ : root label *b*, immediate subtree types σ^* ;
- choose: τ

Semantics Consistency (fixed *L*)

Satisfiability (given L)

Homomorphism

Injective

Semantics	Consistency (fixed L)	Satisfiability (given L)
Homo- morphism		NP-complete
		Can find polynomial witness.
Injective		Can reduce NP-complete problem:
		does given regular expression α generate a word using all letters in α .

Semantics	Consistency (fixed L)	Satisfiability (given L)
Homo- morphism	NP-complete, even child-only [Benedikt, Fan, Geerts '05]	NP-complete
		Can find polynomial witness.
		Can reduce NP-complete problem:
Injective		does given regular expression α generate a word using all letters in α .

Semantics	Consistency (fixed L)	Satisfiability (given <i>L</i>)
Homo- morphism	NP-complete, even child-only [Benedikt, Fan, Geerts '05]	NP-complete
		Can find polynomial witness.
Injective	?	Can reduce NP-complete problem:
		does given regular expression α generate a word using all letters in α .

[Barceló, Libkin, Poggi, Sirangelo '09]

- PTIME without descendant.
 - Can given set of words be matched disjointly in a word from L?

[Barceló, Libkin, Poggi, Sirangelo '09]

- PTIME without descendant.
 - Can given set of words be matched disjointly in a word from L?

[Kopczyński '11]

- PTIME with ≤ 1 descendant on each branch.
 - Can given set of trees be matched disjointly in a tree from L?

[Barceló, Libkin, Poggi, Sirangelo '09]

- PTIME without descendant.
 - Can given set of words be matched disjointly in a word from L?

[Kopczyński '11]

- PTIME with ≤ 1 descendant on each branch.
 - Can given set of trees be matched disjointly in a tree from L?

[David, Francis, Murlak '14] (this work)

• \leq 2 descendants on each branch: NP-complete;

[Barceló, Libkin, Poggi, Sirangelo '09]

- PTIME without descendant.
 - Can given set of words be matched disjointly in a word from L?

[Kopczyński '11]

- PTIME with ≤ 1 descendant on each branch.
 - Can given set of trees be matched disjointly in a tree from L?

[David, Francis, Murlak '14] (this work)

- \leq 2 descendants on each branch: NP-complete;
- PTIME (FPT) with descendant only (without child)
 - works for injective and homomorphism semantics,
 - extends to patterns with sibling order (following-sibling).

Challenges

- Our FPT algorithm has complexity 2^{2||L||} · poly(||π||); the NP upper bound gives complexity 2^{poly(||L||,||π||)}. Inherent trade-off, or can this be reconciled?
- 2. Assuming we stick to descendant and following sibling, is consistency still tractable for patterns that are DAGs, not trees?