On a local similarity of graphs

Tomasz Dzido

University of Gdańsk

(with Krzysztof Krzywdziński from Adam Mickiewicz University)

FIT 2015, 30.01.2015

Problem

If we have I graphs, how to measure how much they differ?

Problem

If we have I graphs, how to measure how much they differ?

k-similar graphs

We say that two graphs G and H, having the same number of vertices n, are k-similar if they contain a common induced subgraph of order k. Assume that l > 3.

Problem

If we have I graphs, how to measure how much they differ?

k-similar graphs

We say that two graphs G and H, having the same number of vertices n, are k-similar if they contain a common induced subgraph of order k. Assume that $l \geq 3$.

$\eta(k, l)$, Dzido, Krzywdziński 2015

Let $\eta(k, l)$ be the smallest n such that in any family of l graphs on n vertices there exists a k-similar pair of graphs.

Motivation 1

Similar questions was put by Chung, Erdös and Spencer and by Chung, Erdös, Graham, Ulam and Yao. The authors of those articles were interested in finding a **common induced subgraph** of two dense graphs.

Motivation 1

Similar questions was put by Chung, Erdös and Spencer and by Chung, Erdös, Graham, Ulam and Yao. The authors of those articles were interested in finding a **common induced subgraph** of two dense graphs.

Motivation 2

Some similar and new considerations were presented by other authors, including Bollobás, Kittipassorn, Narayanan and Scott and Lee, Loh and Sudakov

Motivation 1

Similar questions was put by Chung, Erdös and Spencer and by Chung, Erdös, Graham, Ulam and Yao. The authors of those articles were interested in finding a **common induced subgraph** of two dense graphs.

Motivation 2

Some similar and new considerations were presented by other authors, including Bollobás, Kittipassorn, Narayanan and Scott and Lee, Loh and Sudakov

Motivation 3

An additional motivation for studying $\eta(k, l)$ is the fact that it is closely related to the Ramsey number.

Problem and Definition Motivation Ramsey number

Ramsey number - definition

The Ramsey number R(k, k) is the minimum number n such that any graph G on n vertices contains either a k-vertex clique K_k , or an independent set of size k denoted by $\overline{K_k}$.

Let $k \geq 3$. Then

$$\eta(k,3)=R(k,k).$$

Let $k \geq 3$. Then

$$\eta(k,3)=R(k,k).$$

Since
$$\eta(k,3) = R(k,k)$$
 and $\eta(k,l) \ge \eta(k,l')$ for $l < l'$

Let k > 3. Then

$$\eta(k,3)=R(k,k).$$

Since $\eta(k,3) = R(k,k)$ and $\eta(k,l) \ge \eta(k,l')$ for l < l'

Theorem 2

Let $k, l \geq 3$. Then the number $\eta(k, l)$ is a well-defined finite number.

Let $k \ge 3$. Then $\eta(k, 2k + 1) \le R(k - 1, k - 1)$.

Let $k \ge 3$. Then $\eta(k, 2k + 1) \le R(k - 1, k - 1)$.

Corollary

 $\eta(k,l)$ might be considered a non-trivial generalisation of the Ramsey number.

Let $k \ge 3$. Then $\eta(k, 4) > (k - 1)^2$.

Let $k \ge 3$. Then $\eta(k, 4) > (k - 1)^2$.

Theorem 5

Let $k, l \geq 3$ and $t \geq 1$. Then

$$\eta(tk, l) > t\eta(\lceil k/t \rceil, tl) - t.$$

Relation to the Ramsey Number Constructive lower bounds Large I $\eta(k,l)$ for k=3 and k=4

Let Q_k denotes the set of all non-isomorphic graphs on k vertices. The exact value of the number $|Q_k|$ is not known.

Let Q_k denotes the set of all non-isomorphic graphs on k vertices. The exact value of the number $|Q_k|$ is not known.

Bounds on $|Q_k|$

 $\sqrt{2^{{k \choose 2}}} < |Q_k| < 2^{{k \choose 2}}$ by P. O. de Wet

 $2^{\binom{k}{2}}$ is the number of labelled graphs on k vertices. As each such graph admits at most k! automorphisms, a lower bound on $|Q_k|$ is $2^{\binom{k}{2}}/k!$, which is much stronger than the constructive bound of de Wet.

Let Q_k denotes the set of all non-isomorphic graphs on k vertices. The exact value of the number $|Q_k|$ is not known.

Bounds on $|Q_k|$

$$\sqrt{2^{{k \choose 2}}} < |Q_k| < 2^{{k \choose 2}}$$
 by P. O. de Wet

 $2^{\binom{k}{2}}$ is the number of labelled graphs on k vertices. As each such graph admits at most k! automorphisms, a lower bound on $|Q_k|$ is $2^{\binom{k}{2}}/k!$, which is much stronger than the constructive bound of de Wet.

Fact 1

$$\eta(k, l) = k$$
 for $l > |Q_k|$ and $k \ge 3$.

Relation to the Ramsey Number Constructive lower bounds Large I $\eta(k,l)$ for k=3 and k=4

Let Q_k denotes the set of all non-isomorphic graphs on k vertices. The exact value of the number $|Q_k|$ is not known.

Bounds on $|Q_k|$

$$\sqrt{2^{{k \choose 2}}} < |Q_k| < 2^{{k \choose 2}}$$
 by P. O. de Wet

 $2^{\binom{k}{2}}$ is the number of labelled graphs on k vertices. As each such graph admits at most k! automorphisms, a lower bound on $|Q_k|$ is $2^{\binom{k}{2}}/k!$, which is much stronger than the constructive bound of de Wet.

Fact 1

$$\eta(k, l) = k$$
 for $l > |Q_k|$ and $k \ge 3$.

Fact 2

$$\eta(k, l) = k + 1$$
 for $l = |Q_k|$ and $k \ge 4$.

Fact 3

$$\eta(k,l)=k+1$$
 for $l=|Q_k|-1$ and $k\geq 4$.

Fact 3

$$\eta(k,l)=k+1$$
 for $l=|Q_k|-1$ and $k\geq 4$.

Lemma

$$|S_n| \leq \frac{|Q_{n-1}|}{2}$$
 for $n > 6$.

Fact 3

$$\eta(k,l)=k+1$$
 for $l=|Q_k|-1$ and $k\geq 4$.

Lemma

$$|S_n| \leq \frac{|Q_{n-1}|}{2}$$
 for $n > 6$.

Theorem 6

$$\eta(k, l) = k + 1$$
 for $k \ge 5$ and $|Q_k| \ge l > \frac{3}{4}|Q_k|$.

Let l > 3. Then

$$\eta(3, l) = \begin{cases} 6 & \text{for } l = 3; \\ 5 & \text{for } l = 4; \\ 3 & \text{for } l \ge 5; \end{cases} \text{ and } \eta(4, l) = \begin{cases} 18 & \text{for } l = 3; \\ 10 & \text{for } l = 4; \\ 7 & \text{for } l = 5; \\ 6 & \text{for } l = 6, 7; \\ 5 & \text{for } 8 \le l \le 11; \\ 4 & \text{for } \ge 12. \end{cases}$$

More results and details in:

Article

Dzido T., Krzywdziński K.: On a local similarity of graphs, to appear in *Discrete Mathematics*

Relation to the Ramsey Number Constructive lower bounds Large / $\eta(k,l)$ for k=3 and k=4

Thank you.